
Journal of Analysis and Applications
Vol. 21 (2023), No.1, pp.37-63
ISSN: 0972-5954
© SAS International Publications

URL : www.sasip.net

Pseudo-deterministic virtual finite

automaton (PDVFA) of order (s, t)
A. Jain*, S. Jain, H. Ghazwani and G.C. Petalcorin, Jr.

Abstract. In this paper, we introduce the notion of Pseudo-deterministic
Virtual Finite Automaton (PDVFA) of order (s, t) and study the lan-
guage recognition capabilites of PDVFA.

AMS Subject Classification (2020): 68T99, 68Q45

Keywords: Nondeterministic pushdown automata, deterministic push-

down automata, context-free grammar

1. Introduction

We know that a finite automaton [2, 3, 6, 7, 8, 9, 10, 12, 14] has

a set of states and its “control” moves from state to state in response to

external “inputs”. One of the crucial distinctions among classes of finite

automata is whether that control is “deterministic”, meaning thereby that

the automaton can not be in more than one state at any one time, or

“non-deterministic”, meaning thereby that it may be in several states at

once.

A deterministic finite automaton (DFA) is one that is in a single state

after reading any sequence of inputs. The term “deterministic” refers to

the fact that on each input symbol there is one and only one state to

which the automaton can transit from its current state. In contrast, a non-

deterministic finite automaton (NFA) can make transitions to more than

*Corresponding author

38 A. Jain et al.

one states simultaneously on receiving an input symbol and therefore can

be in several states at once.

Motivated by the idea to have an automaton with properties lying

between that of DFA and NFA, the first author and his collaborators in-

troduced the notion of virtual deterministic finite automaton (VDFA) [8],

semi-deterministic virtual finite automaton (SDVFA) of order (s, t) [9] and

quasi-deterministic virtual finite automaton (QDVFA) of order “s′′ [10]

which are midway stages between DFA and NFA and studied language

recognition capabilities of these automata.

In this paper, we introduce a more generalized notion of finite au-

tomaton viz.pseudo-deterministic virtual finite automaton (PDVFA) of or-

der (s, t) which can be made to behave like a DFA, NFA, ε-NFA, VDFA,

SDVFA of order (s, t) and QDVFA of order “s′′ by giving special values to

the parameters s and t. We also study the language recognition capabilites

of PDVFA of order (s, t).

2. Pseudo-deterministic virtual finite automa-
ton (PDVFA) of order (s, t)

We first define pseudo-deterministic virtual finite automaton (PDVFA)

of order (s, t) as follows:

Definition 2.1. A pseudo-deterministic virtual finite automaton

(PDVFA) of order (s, t) is a finite automaton that can make atmost

“
√
s”(s ≥ 1) transitions on receiving a real input and atmost “

√
t”(t ≥ 0)

transitions on virtual input (or no input). (Zero transition means the au-

tomaton remains in the same state).

Remark 2.2. For a PDVFA having n states, we have the following:

(i) If s = 1 and t = 0, then a PDVFA of order (1, 0) is simply a DFA [2,

Pseudo-deterministic virtual finite automaton 39

6, 16].

(ii) If s = 1 and t = n2, then a PDVFA of order (1, n2) is simply a VDFA

[8].

(iii) If s = n2 and t = 0, then a PDVFA of order (n2, 0) is simply an NFA

[2, 6, 16].

(iv) If s = n2 and t = n2, then a PDVFA of order (n2, n2) is simply an

ε-NFA [2, 6, 16].

(v) A PDVFA of order (s, t) is an SDVFA of order ([
√
s], [
√
t]) [9] where

[·] is the greatest integer function.

(vi) If s = k2 where k ≥ 1 and t = n2, then a PDVFA of order (k2, n2) is

simply a QDVFA of order k [10].

We formally define a pseudo-deterministic virtual finite automaton

(PDVFA) of order (s, t) as follows:

Definition 2.3. A pseudo-deterministic virtual finite automaton

(PDVFA) of order (s, t) consists of

1. A finite set of states (including the dead state) often denoted by Q.

2. A finite set of input symbols including the empty string symbol ε.

This is often denoted by Σ
⋃
{ε}. Σ is called real alphabet.

3. A transition function δ(s,t) that takes as arguments a state and an

input symbol. On real input symbol i.e. if the symbol is a member

of real alphabet Σ, δ(s,t) returns a set of atmost “
√
s” states while on

virtual input ε, the transition function returns a set of atmost “
√
t”

states.

4. A start state S which is one of the states in Q.

40 A. Jain et al.

5. A set of final or accepting states F . The set F is a subset of Q. Dead

state is never an accepting state and it makes a transition to itself on

every possible input symbol.

We can also denote a PDVFA of order (s, t) by a “five tuple” notation:

V = (Q,S,Σ
⋃
{ε}, δ(s,t), q0, F)

where V is the name of the PDVFA, Q is the set of states, Σ
⋃
{ε} is the

set of input symbols, δ(s,t) is the transition function, q0 is the start state

and F is the set of accepting states.

2.1. Transition diagram for a PDVFA of order (s, t)

A transition diagram for a PDVFA V = (Q,S,Σ
⋃
{ε}, δ(s,t), q0, F) of

order (s, t) is a graph defined as follows:

(i) For each state in Q, there is a node.

(ii) For each state q inQ and each real input symbol a in Σ, let δ(s,t)(q, a) =

{p1, p2, · · · , pk} where k ≤
√
s. Then, the transition diagram has k

arcs from node q to node pi (1 ≤ i ≤ k), labeled “a”. Moreover, if

δ(s,t)(q, ε) = {r1, r2, · · · , rm} where (m ≤
√
t), then there are m arcs

from node q to node ri, i = 1 to m, labeled ε.

Note that one of the ri is q itself. If there are several input symbols

that cause transitions from node q to node p, then the transition

diagram can have one arc, labeled by the list of these symbols.

(iii) There is an arrow into the start state q0, labeled start. This arrow

does not originate at any node.

(iv) Nodes/states corresponding to accepting states i.e. those in F are

marked by double circle. States which are not in F have a single

circle.

Pseudo-deterministic virtual finite automaton 41

(v) If there is no arrow from a state on a real input, it means that arrow

goes to dead state. If there is no arrow/arc from a state on the virtual

input ε, it means that arrow goes to that state itself.

(vi) All arrows from dead state goes to dead state.

2.2. Transition table for a PDVFA of order (s, t)

A transition table for a PDVFA of order (s, t) is a conventional tabular

representation of a function like δ(s,t) that takes two arguments viz. state

and input symbol and returns as output, a set of atmost
√
s states in case

of actual input symbol and a set of atmost
√
t states in case of virtual input

ε.

The rows of the table correspond to the states, and the columns cor-

respond to the inputs. The entry for the row corresponding to state “q”

and the column corresponding to input “a” is the value δ(s,t)(q, a).

Note that δ(s,t)(q, a) is a set of atmost
√
s states if “a” is a real input and

a set of atmost
√
t states if “a” is a virtual input.

Example 2.4. Fig 2.1 shows a PDVFA of order (4, 0) whose job is to

accept all and only the strings of the form b3 and b2n(n ≥ 1). The language

accepted by the PDVFA is L = {b3}
⋃
{b2n : n ≥ 1}.

In this PDVFA, state q0 is the start state. Whenever the automaton

in state q0 sees a b, it makes a transition to state q1 as well as to q4. From

states q1 and q4, on receiving the input b, the automaton makes transitions

to states q2 and q5 respectively. If no more real input is there, then the

automaton remains in state q2 and q5 and the given input string is accepted

since q5 is an accepting state.

However, if the automaton further receives real input b in state q2 and

q5 , it makes transitions to states q3 and q4 respectively. At the end of the

42 A. Jain et al.

input symbols, the state of the automaton tells whether the input string is

accepted or not.

Start

q1 q2 q3

b

q4

b b

b

b

b

q5

Fig 2.1: PDVFA of order (4, 0) that accepts the language

L = {b3}
⋃
{b2n : n ≥ 1}

The transition table corresponding to transitions functions δ(4,0) of

Example 2.4 is shown in Table 2.1:

State b ε
→ q0 {q1, q4} {q0}

q1 {q2} {q1}
q2 {q3} {q2}

∗ q3 {d} {q3}
q4 {q5} {q4}

∗ q5 {q4} {q5}

Table 2.1: Transition table for the PDVFA of order (4, 0) in

Example 2.1

In the above transition table, the start state is marked with an arrow,

and the accepting states are marked with a star and d denotes the dead

state.

Let us see how PDVFA of Fig 2.1 works on receiving the input se-

quence bbbb. It starts in its start state q0, when it reads first b, it goes to

states q1 and q4. In states q1 and q4, it reads the second b and goes to

Pseudo-deterministic virtual finite automaton 43

the states q2 and q5. Since q5 is an accepting state, the PDVFA accepts

bb. However, the input is not finished. When the third input b occurs, the

automaton goes to states q3 and q4 respectively. Thus after reading bbb, the

PDVFA is in states q3 and q4. The last input, viz. b sends the automaton

from states q3 and q4 to states d and q5 respectively. Since we are again in

an accepting state, the input bbbb is accepted.

Again, let us see the behavior of PDVFA of Fig 2.1 on the input string

bbb. On receiving the first input symbol b, the automaton makes a transition

from start state q0 to states q1 and q4. In states q1 and q4, when it receives

the second input symbol b, it goes to states q2 and q5 respectively. From

states q2 and q5, on receiving the last input symbol b it goes to states q3

and q4. Since no more input symbols are there, the automaton remains in

states q3 and q4. Since q3 is an accepting state, so the input bbb is accepted

by this PDVFA. Note that on virtual input ε, the PDVFA remains in the

same state.

The PDVFA of Fig 2.1 can be specified formally as

V = ({q0, q1, q2, q3, q4, q5}, {b, ε}, δ(4,0), q0, {q3, q5}).

Example 2.5. Consider the PDVFA of order (1, 1) in Fig. 2.2.

0Start 1

1

Fig 2.2: PDVFA of order (1, 1) that accepts the language

L = {(10)n : n ≥ 0}

44 A. Jain et al.

It is easy to see from the Fig. 2.2 that the only way the PDVFA can

stop in a final state is if the input is either a repetition of the string 10 or the

empty string. Therefore, the automaton accepts the language L = {(10)n :

n ≥ 0}. We see the behaviour of the automaton when it is presented with

the string w = 110. After reading the prefix 11, the automaton finds itself

in dead state d and remains in that state on receiving any further input.

Thus, no final state can be reached by processing w = 110 and hence the

string is not accepted.

The transition table for this PDVFA of order (1, 1) is shown in Table

2.2:

State 0 1 ε
→ q0 {d} {q1} {q2}

q1 {q2} {d} {q1}
∗q2 {d} {q1} {q2}

Table 2.2: Transition table for the PDVFA of order (1, 1) in

Example 2.5

2.3. Extending the transition function to strings

We have explained informally that the PDVFA of order (s, t) defines a

language: the set of all strings that result in a sequence of state transitions

from the start state to one of the accepting state. In terms of the transition

diagram, the language of an PDVFA of order (s, t) is the set of labels along

all the paths that lead from the start state to atleast one of the accepting

state.

Now, we need to make the notion of the language of an PDVFA of

order (s, t) precise. To do so, we define an extended transition function

that describes what happens when we start in any state and follow any

sequence of inputs. If δ(s,t) is our transition function, then the extended

transition function constructed from δ(s,t) will be called δ̂(s,t).

Pseudo-deterministic virtual finite automaton 45

The extended transition function is a function that takes a state q

and a string w and returns a set of states i.e. the set of states that the

automaton reaches when starting in state q and processing the sequence of

inputs w.

To give the formal definition of an extended transition function for a

PDVFA of order (s, t) which leads to the definition of acceptance of strings

and languages by these automata, we first need to learn a central definition,

called the pseudo closure of a state denoted by p-close.

Informally, we p-close a state q by following all transitions out of q

that are labeled with virtual input ε. However, when we get to other states

by following ε, we follow the ε-transitions out of those states, and so on,

eventually finding every state that can be reached from q along any path

whose arcs are all labeled ε.

Formally, we define p-closure of a state q denoted by p-close(q) re-

cursively as follows:

Basis. State q is in p-close(q).

Induction. If state p is in p-close (q), and there is a transition from state

p to state r labeled ε, then r is in p-close (q). More precisely, if δ(s,t) is

the transition function of the PDVFA involved, and p is in p-close (q), then

p-close(q) also contains all the states in δ(s,t)(p, ε).

Example 2.6. Consider the collection of states in Fig. 2.3 which may be

part of some PDVFA of order (1, 4). Here Σ = {a, b}.

46 A. Jain et al.

6

1
5

2

7

3

8

4

a

b

b

b

b

a

a

a

a,b

a,b

Fig. 2.3: Some states and transitions of a PDVFA of order (1, 4)

In Fig 2.3 p-close(1) = {1, 2, 3, 4, 6}. Each of these states can be

reached from state 1 along a path exclusively labeled ε. For example, state

4 is reached by the path 1 → 2 → 3 → 4. State 5 or 7 or 8 are not in p-

close(1), although they are reachable from state 1, but those paths include

transitions labeled with real input. The fact that state 4 is also reached

from state 1 along a path 1 → 6 → 7 → 4 that has non ε-transitions is

unimportant. The existence of one path with all labels ε is sufficient to

show State 4 is in v-close (1).

Note that we have omitted ε-transitions if the transitions takes a state to

itself.

Example 2.7. Consider the PDVFA of Fig 2.1. Here p-close (qi) =

{qi} ∀ i = 0, 1, 2, 3, 4, 5.

Example 2.8. Consider the PDVFA of Fig 2.2. Here p-close (q0) =

{q0, q2}, p-close (q1) = {q1} and p-close (q2) = {q2}.

The p-closure allows us to explain easily what the transitions of an

PDVFA look like when given a sequence of real inputs. From there, we can

define what it means for an PDVFA to accept its input.

Suppose that V = (Q,S,Σ
⋃
{ε}, δ(s,t), q0, F) is a PDVFA of order

(s, t). We first define ˆδ(s,t), the extended transition function, to reflect what

Pseudo-deterministic virtual finite automaton 47

happens on a sequence of inputs. The intent is that δ̂(s,t)(q, w) is the set of

states that can be reached along a path whose labels when concatenated,

form the string w. The appropriate recursive definition of ˆδ(s,t) is:

Basis. δ̂(s,t)(q, ε) = p-close(q). That is, if the label of the path is ε, then we

can follow only ε-labeled arcs extending from state q; that is exactly what

p-close does.

Induction. Suppose w is of the form xa, where a is the last symbol of

w. Note that a is a member of Σ; it can not be ε, which is not in Σ. We

compute δ̂(s,t)(q, w) as follows:

1. Let δ̂(s,t)(q, x) = {p1, p2, · · · , pk}. That is, the p′is are all and only

the states that we can reach from q following a path labeled x. This

path may end with one or more transitions labeled ε, and may have

other ε-transitions as well.

2. Let

k⋃
i=1

δ(s,t)(pi, a) = {r1, r2, · · · , rk}. That is, follow transitions la-

beled a from states we can reach from q along paths labeled x. The

rj ’s are some of the states we can reach from q along paths labeled

w. The additional states we can reach are found from the rj ’s by

following ε-labeled arcs in Step (3), below.

3. Then δ̂(s,t)(q, w) =

k⋃
i=1

p-close(ri). This additional closure step includes

all the paths from q labeled w, by considering the possibility that

there are additional ε-labeled arcs that we can follow after making a

transition on the final ”real” input symbol a.

Example 2.9. Let us compute δ̂(1,1)(q0, 1010) for the PDVFA of Fig 2.2.

A summary of the steps needed are as follows:

1. δ̂(1,1)(q0, ε) = p-close(q0) = {q0, q2}.

48 A. Jain et al.

2. Compute ˆδ(1,1)(q0, 1) as follows:

(a) First compute the transitions on input 1 from each of the state

obtained in Step 1. Here the states obtained in Step 1 are q0 and q2,

i.e. we compute δ(1,1)(q0, 1) = {q1} and δ(1,1)(q2, 1) = {q1}.

(b) Next p-close the members of the set computed in step 2(a). We

get p-close(q1) = {q1}. That set is δ̂(1,1)(q0, 1) i.e. δ̂(1,1)(q0, 1) = {q1}.

This two-step pattern repeats for the next three symbols.

3. Compute δ̂(1,1)(q0, 10) as follows:

(a) First compute δ(1,1)(q1, 0) = {q2}.

(b) Then compute

δ̂(1,1)(q0, 10) = p-close(q2) = {q2}.

4. Compute δ̂(1,1)(q0, 101) as follows :

(a) First compute δ(1,1)(q2, 1) = {q1}.

(b) Then compute

δ̂(1,1)(q0, 101) = p-close(q1) = {q1}.

5. Compute δ̂(1,1)(q0, 1010) as follows :

(a) First compute δ(1,1)(q1, 0) = {q2}.

(b) Then compute

δ̂(1,1)(q0, 1010) = p-close(q2) = {q2}.

2.4. An application of PDVFA: Text search

Suppose we are given a set of words which we shall call the keywords,

and we want to find occurences of any of these words. In applications such

as these, a useful way to proceed is to design an PDVFA of appropriate

order which signals by entering an accepting state, that it has seen one of

Pseudo-deterministic virtual finite automaton 49

the keywords. The text of a document is fed, one character at a time to

this PDVFA, which then recognizes occurences of the keywords in this text.

This is a simple form of an PDVFA that recognizes a set of keywords.

For example, suppose we want to design a PDVFA of order (1, 4) to

recognize occurences of the words “Rupee” and “Dollar”. The transition

diagram for the PDVFA to accomplish the task is given in Fig 2.4.

2

R

D O L L A R

U P E E

3 4 5 6
7

8
9 10 11 12 13

14

Dead

State

d

Dead

State

d
-R

-E-U
-P

-E

-D
-O

-L -L -A -R

Start 1

Fig. 2.4: PDVFA of order (1, 4) that searches for the keywords

“Rupee” and “Dollar”

We make the following observations from the transition diagram of

Fig. 2.4:

1. State 1 is the start state with a transition to itself on every real input

symbol e.g. every printable ASCII character if we are examining

text. Intuitively, the start state makes two transitions on virtual

input assuming that the keywords ”Rupee” and ”Dollar” has begun.

50 A. Jain et al.

2. For each keyword a1a2 · · · ak, there are k states say q1, q2, · · · , qk. We

construct a complete sequence of states for each keyword, as if they

were the only words the automaton needed to recognize. Then we

add a new start state (State 1 in Fig 2.4) with ε-transitions to the

start state of the automaton for each of the keywords.

3. Σ is the set of all printable ASCII characters. States 2,3,4,5,6,7 have

the job of recognizing the keyword “Rupee” while states 8, 9, 10, 11,

12, 13, 14 recognize the keyword “Dollar”.

4. We have omitted transitions on virtual input ε if the transition on

virtual input is on the same state.

Another variant of PDVFA of Fig. 2.4 is the PDVFA of order (1, 0)

shown in Fig. 2.5.

1

7

2

D

R

8
O

3

9

U

L

4
P

10
L

5
P

11A

6

12

E

R

-{R,D}

-U -P -P -E

-O

-

Start

-L
-L

A -R

Fig. 2.5: PDVFA of order (1, 0) that searches for the keywords

“Rupee” and “Dollar”

Pseudo-deterministic virtual finite automaton 51

3. Language of a PDVFA

Now, we define the language of a PDVFA of order (s, t) say, V =

(Q,S,Σ
⋃
{ε}, δ(s,t), q0, F) as

L(V) = {w | δ̂(s,t)(q0, w) ∩ F 6= ∅}.

That is, the language of V is the set of all strings w that take the start

state to atleast one accepting state. For instance, we saw in Example 2.5,

δ̂(1,1)(q0, 1010) = {q2} and q2 is an accepting state, so the string 1010 is in

the language of that PDVFA. In fact, the language accepted by a PDVFA

is called a PDVFA language.

In other words, a language is said to be a PDVFA language if there

is a PDVFA that accepts exactly all sentences in the language. For example,

the language L = {(10)n | n ≥ 0} is a PDVFA language where Σ = {0, 1}.

Another example of a PDVFA language acting on the alphabet Σ = {b} is

L = {{b3}
⋃
{b2n|n ≥ 1}.

Example 3.1. Consider the PDVFA of Fig 2.4. Let us compute δ̂(1,2)(1,

RAPEE) for this PDVFA to see whether the string ”RAPEE” is in the

language of that PDVFA or not. Note that state 1 is the start state.

The summary of the steps is given below:

1. δ̂(1,2)(1, ε) = p-close(1) = {1, 2, 8}.

2. Compute δ̂(1,2)(1, R) as follows:

(a) First compute the transitions on input R from the states 1, 2 and

8 that we obtained in the calculation of δ̂(1,2)(1, ε) in Step 1.

That is, we compute

δ(1,2)(1, R)
⋃
δ(1,2)(2, R)

⋃
δ(1,2)(8, R) = {1, 3, d}.(d is the dead state)

52 A. Jain et al.

(b) Next, p-close the members of the set computed in Step 2(a). We

get

p-close(1)
⋃
p-close(3)

⋃
p-close(d) = {1, 2, 3, 8, d}.

This two step pattern repeats for the next four symbols.

3. Compute δ̂(1,2)(1, RA) as follows:

(a) First compute δ(1,2)(1, A)
⋃
δ(1,2)(2, A)

⋃
δ(1,2)(3, A)

⋃
(8, A)⋃

δ(1,2)(d,A) = {1, d}.

(b) Then compute

δ̂(1,2)(1, RA) = p-close(1)
⋃
p-close(d) = {1, 2, 8, d}.

4. Compute δ̂(1,2)(1, RAP) as follows:

(a) First compute δ(1,2)(1, P)
⋃
δ(1,2)(2, P)

⋃
δ(1,2)(8, P)

⋃
δ(1,2)(d, P)

= {1, d}.

(b) Then compute

δ̂(1,2)(1, RAP) = p-close(1)
⋃
p-close(d) = {1, 2, 8, d}

5. Compute δ̂(1,2)(1, RAPE) as follows:

(a) First compute δ(1,2)(1, E)
⋃
δ(1,2)(2, E)

⋃
δ(1,2)(8, E)

⋃
δ(1,2)(d,E)

= {1, d}.

(b) Then compute

δ̂(1,2)(1, RAPE) = p-close(1)
⋃
p-close(d) = {1, 2, 8, d}.

6. Finally Compute δ̂(1,2)(1, RAPEE) as follows:

(a) First compute δ(1,2)(1, E)
⋃
δ(1,2)(2, E)

⋃
δ(1,2)(8, E)

⋃
δ(1,2)(d,E)

= {1, d}.

Pseudo-deterministic virtual finite automaton 53

(b) Then compute

δ̂(1,2)(1, RAPEE) = p-close(1)
⋃
p-close(d) = {1, 2, 8, d}.

Conclusion. Since the only accepting states of PDVFA of Fig 2.4 are 7

and 14 and δ̂(1,2)(1, RAPEE) = {1, 2, 8, d} which does not contain any of

the two accepting states, so the string “RAPEE” is not accepted by the

PDVFA and therefore the string “RAPEE” is not in the language of this

PDVFA.

Example 3.2. Consider the PDVFA of order (1, 0) in Fig. 3.1. It can be

easily verified that the language accepted by this PDVFA is given by

L = {ambn | m,n ≥ 1}.

0
q 1

q
2

q

Dead

state

d

a

a

b

b

a,b,

a, b,

Start

Fig. 3.1

4. Importance of PDVFA

In reasoning about nondeterministic machines, we should be quite

cautious in using intuitive notions. Intuition can easily lead us astray, and

we must be able to give precise arguments to substantiate our conclusions.

Nondeterminism is a difficult concept. Digital computers are completely

deterministic, their state at any time is uniquely from the input and the

initial state.

54 A. Jain et al.

Thus it is natural to ask why we study nondeterministic machines at

all. We are trying to model real systems, so why include such nonmechnical

features as choice ? We can answer this question in various ways.

Many deterministic algorithms require that one make a choice at some

stage. A typical example is a game-playing program. frequently, the best

move is not known, but can be found using an exhaustive search with back-

tracking. When several alternatives are possible, we choose one and follow

it until it becomes clear whether or not it was best. If not, we retreat to

the last decision point and explore the other choices.

A nondeterministic algorithm that can make the best choice would be

able to solve the problem without backtracking, but a deterministic one can

simulate nondeterminism with some extra work. For this reason, nondeter-

ministic machines can serve as models of search and backtrack algorithms.

However, controlled nondeterminism is useful in solving problems easily.

For example, consider the PDVFA in Fig. 2.1, it is clear that there

is a choice to be made. The first alternative leads to the acceptance of the

string b3, while the second accepts all strings with the even number of b’s.

The language accepted by the PDVFA is {b3}
⋃
{b2n : n ≥ 1}. While it

is possible to find a DFA for this language, the nondeterminism is quite

natural.

The language is the union of two quite different sets, and the con-

trolled nondeterminism lets us decide at the outset which case we want.

The deterministic solution is not as obviously related to the definition and

so is a little harder to find. Therefore, controlled nondeterminism or equiv-

alently PDVFA is an effective mechanism for describing some complicated

languages concisely.

Again, as we have seen that nondeterminism allows us to “program”

Pseudo-deterministic virtual finite automaton 55

solutions to problems using a higher-level language. The nondeterministic

finite automaton is “compiled”, by an algorithm into a deterministic au-

tomaton that can be executed on a conventional computer. We use subset

construction method to change an NFA to an equivalent DFA. In worst

case, if NFA has n states the corresponding DFA can have 2n states.

On the other hand, conversion from PDVFA to corresponding DFA

generates much less number of states in new DFA. Also, most of the pro-

gramming problems can be solved by simulating PDVFA. Moreover, PDVFA

is easier to construct and understand for many languages as compared to

NFA. Problems that can not be solved by a DFA can be solved by an

PDVFA.

For example, consider a finite automaton that accepts the language

L = { all strings of 0’s and 1’s such that nth from the end is 1} i.e. that

accepts all strings of 0’s and 1’s such that the nth symbol from the end is 1.

If the automaton is a nondeterministic finite automaton as shown in Fig.

4.1, then, the automaton has n+ 1 states.

Intuitively, a DFA D converted from NFA that accepts the language

L must remember the last n symbols it has read. Since any of 2n subsets

of the last n symbols could have been 1, if D has fewer than 2n states, then

there would be some state q such that D can be in state q after reading

two different sequences of n bits, say a1a2 · · · an and b1b2 · · · bn.

Since the sequences are different, they must differ in some position,

say ai 6= bi. Suppose (by symmetry) that ai = 1 and bi = 0. If i = 1, then q

must be both an accepting state and a non accepting state, since a1a2 · · · an
is accepted (the nth symbol from the end is 1) and b1b2 · · · bn is not. If i > 1,

then consider the state p that D enters after reading i−1 0’s. Then p must

be both accepting and non accepting, since aiai+1 · · · an00 · · · 0 is accepted

56 A. Jain et al.

and bibi+1 · · · bn00 · · · 0 is not. therefore, D must have 2n states.

0
q

1
q 2

q
1 0,1 0,1 0,1 0,11n

q
- n

q

0,1

Start
.

Fig. 4.1: NFA that accepts all strings of 0’s and 1’s such that

nth symbol from the end is 1

We now construct a PDVFA of order (1, 1) with n+3 states (including

the dead state) to accept the language L i.e. the set of all strings of 0’s and

1’s such that nth symbol from the end is 1.

Note that the number n + 3 is greater than n + 1 but much smaller than

the number 2n.

1
q 2

q 0,11 0,1

0,1

0,1

0,1

0,1

0,1
0

n
q 1n

q
+

Dead

State

d

3
q0

q
Start

.

Fig. 4.2: PDVFA of order (1, 1) that accepts all strings of 0’s

and 1’s such that nth symbol from the end is 1

We now illustrate the working of PDVFA of order (1, 1) in Fig. 4.2 for

n = 3.

Pseudo-deterministic virtual finite automaton 57

0,1
0

1

0,1

0,1 0,1

Dead

State

d

Start

0,1

Fig. 4.3: PDVFA of order (1, 1) that accepts all strings of 0’s and

1’s such that 3rd symbol from the end is 1

We examine the behaviour of the PDVFA of order (1, 1) in Fig. 4.3 on

receiving input sequence 0111 and input sequence 01111000. We compute

δ̂(1,1)(q0, 0111) and δ̂(1,1)(q0, 01111000) for the PDVFA of Fig. 4.3.

A summary of the steps needed are as follows :

1. δ̂(1,1)(q0, ε) = p-close (q0) = {q0, q1}.

2. Compute δ̂(1,1)(q0, 0) as follows :

(a) First compute transitions on input 0 from states q0 and q1 ob-

tained in Step 1 on evaluating δ̂(1,1)(q0, ε). That is we compute

δ(1,1)(q0, 0)
⋃
δ(1,1)(q1, 0) = {q0, d}.

b) Next p-close the members of the set computed in Step 2(a). We

get p-close(q0)
⋃
p-close(d) = {q0, q1}

⋃
{d} = {q0, q1, d}. That

set is δ̂(1,1)(q0, 0) i.e. δ̂(1,1)(q0, 0) = {q0, q1, d}. This two step

pattern repeats for the rest of the input symbols.

3. Compute δ̂(1,1)(q0, 01) as follows :

58 A. Jain et al.

(a) First compute transitions on input 1 from states q0, q1 and d ob-

tained in Step 2. That is, we compute δ(1,1)(q0, 1)
⋃
δ(1,1)(q1, 1)⋃

δ(1,1)(d, 1) = {q0, q2, d}.

(b) Next p-close the members of the set computed in Step 3(a). We

get p-close(q0)
⋃
p-close(q2)

⋃
p-close(d) = {q0, q1, q2, d}. There-

fore, δ̂(1,1)(q0, 01) = {q0, q1, q2, d}.

4. Compute δ̂(1,1)(q0, 011) as follows :

(a) Compute

δ(1,1)(q0, 1)
⋃
δ(1,1)(q1, 1)

⋃
δ(1,1)(q2, 1)

⋃
δ(1,1)(d, 1)

= {q0, q2, q3, d}.

(b) Then,

δ̂(1,1)(q0, 011) = p-close(q0)
⋃
p-close(q2)

⋃
p-close(q3)

⋃
p-close(d)

= {q0, q1, q2, q3, d}.

Therefore,

δ̂(1,1)(q0, 011) = {q0, q1, q2, q3, d}.

5. Compute δ̂(1,1)(q0, 0111) as follows :

(a) Compute

δ(1,1)(q0, 1)
⋃
δ(1,1)(q1, 1)

⋃
δ(1,1)(q2, 1)

⋃
δ(1,1)(q3, 1)⋃

δ(1,1)(d, 1)

= {q0, q2, q3, q4, d}.

(b) Then,

δ̂(1,1)(q0, 0111) = p-close(q0)
⋃
p-close(q2)

⋃
p-close(q3)⋃

p-close(q4)
⋃

p-close(d)

= {q0, q1, q2, q3, q4, d}.

Pseudo-deterministic virtual finite automaton 59

Conclusion. Since δ̂(1,1)(q0, 0111) contains the accepting state q4, there-

fore, the string 0111 is accepted by the PDVFA of Fig. 4.3.

Now, we examine the behavior of this PDVFA on input string 01111000,

we continue from Step 5.

1. Compute δ̂(1,1)(q0, 01111) as follows :

(a) Compute

δ(1,1)(q0, 1)
⋃
δ(1,1)(q1, 1)

⋃
δ(1,1)(q2, 1)

⋃
δ(1,1)(q3, 1)⋃

δ(1,1)(q4, 1)
⋃
δ(1,1)(d, 1)

= {q0, q2, q3, q4, d}.

(b) Then,

δ̂(1,1)(q0, 01111) = p-close(q0)
⋃
p-close(q2)

⋃
p-close(q3)⋃

p-close(q4)
⋃

p-close(d)

= {q0, q1, q2, q3, q4, d}.

2. Compute δ̂(1,1)(q0, 011110) as follows :

(a) Compute

δ(1,1)(q0, 0)
⋃
δ(1,1)(q1, 0)

⋃
δ(1,1)(q2, 0)

⋃
δ(1,1)(q3, 0)⋃

δ(1,1)(q4, 0)
⋃
δ(1,1)(d, 0)

= {q0, q3, q4, d}.

(b) Then

δ̂(1,1)(q0, 011110) = p-close(q0)
⋃
p-close(q3)

⋃
p-close (q4)⋃

p-close(d)

= {q0, q1, q3, q4, d}.

60 A. Jain et al.

3. Compute δ̂(1,1)(q0, 0111100) as follows :

(a) Compute

δ(1,1)(q0, 0)
⋃
δ(1,1)(q1, 0)

⋃
δ(1,1)(q3, 0)

⋃
δ(1,1)(q4, 0)⋃

δ(1,1)(d, 0)

= {q0, q4, d}.

(b) Then,

δ̂(1,1)(q0, 0111100) = p-close(q0)
⋃
p-close(q4)

⋃
p-close(d)

= {q0, q1, q4, d}.

4. Compute δ̂(1,1)(q0, 01111000) as follows :

(a) Compute

δ(1,1)(q0, 0)
⋃
δ(1,1)(q1, 0)

⋃
δ(1,1)(q4, 0)

⋃
δ(1,1)(d, 0)

= {q0, d}.

(b) Then,

δ̂(1,1)(q0, 01111000) = p-close (q0)
⋃
p-close (d)

= {q0, q1, d}.

Conclusion. Since δ̂(1,1)(q0, 01111000) does not contain the accepting state

q4, therefore the input string 01111000 is not accepted by the PDVFA of

order (1, 1) in Fig. 4.3.

4. Conclusion

In this paper, we have introduced the notion of Pseudo-deterministic

Virtual Finite Automaton (PDVFA) of order (s, t) and studied the language

recognition capabilites of newly introduced PDVFA.

Pseudo-deterministic virtual finite automaton 61

Acknowledgment. The authors would like to express their sincere grat-

itude to the referees for their valuable suggestions and comments which

improved the paper.

References

[1] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analysis

of Computer Algorithms, Addison-Wesley, Reading, MA, 1974.

[2] A.V. Aho and J.D. Ullman, Foundations of Computer Science, Com-

puter Science Press, New York, 1994.

[3] J. Anderson, Automata Theory with Modern Applications, Cam-

bridge University Press, 2006.

[4] N. Chomsky, in review of Belevitch, V., Language des machines et

langage humain, Language, 34 (1958), p.100.

[5] N. Chomsky, Three models for the description of languages, IRE

Trans. on Information Theory, 2:3 (1956), pp.113-124.

[6] S. Eilenberg, Automata, Languages and Machines, Vol. A-B, Aca-

demic Press, New York, 1974.

[7] C.C. Elgot and G. Mezei, On relations defined by generalized finite

automata, IBM J. of Res. and Dev., 9 (1965), 47-65.

[8] M. Ganesan, P. Bhattacharya and A. Jain, A Notion of Virtual Deter-

ministic Finite Automaton (VDFA) in Language Processing, J. Com-

put. Math. Optim., 2 (2006), 181-206.

[9] A. Jain, Semi-deterministic Virtual Finite Automaton (SDVFA) of

order (s,t), J. Compt. Math. Optim., 5 (2009), 1-22.

[10] A. Jain and J.-S. Lee: Quasi-deterministic virtual finite automaton

(QDVFA) of order s, J. Algeb. and Discr. Struc., 7 (2009), 9-31.

62 A. Jain et al.

[11] A. Gill, Introduction to the Theory of Finite-State Machines, McGraw-

Hill Book Company, New York, 1962.

[12] M.A. Harrison, Introduction to Formal Language Theory, Addison-

Wesley Publishing Company, Reading Maas., 1978.

[13] F.C. Hennie, Finite-State Models for Logical Machines, John Wiley

& Sons, New York, 1968.

[14] M.O. Rabin and D. Scott, Finite automata and their decision prob-

lems, IBM J. Research and Development 3:2 (1959), pp.115-125.

[15] M.P. Schutzenberger, On the definition of a family of automata, In-

formation and Control, 4 (1961).

[16] C.E. Shannon and J. McCarthy, Automata Studies, Princeton Univ.

Press, 1956.

Department of Mathematics

Shanxi Normal University

P.R. China

E-mail: jainarihant@gmx.com

Department of Mathematics

Shanxi Normal University

P.R. China

E-mail: sapnajain@gmx.com

Department of Mathematics

Science College

Jazan university

Kingdom of Saudi Arabia

E-mail: hqghazwani@jazanu.edu.sa

Pseudo-deterministic virtual finite automaton 63

Department of Mathematics and Statistics

College of Science and Mathematics

MSU-Iligan Institute of Technology

Tibanga, Iligan City

Philippines

E-mail: gaudencio.petalcorin@g.msuiit.edu.ph

(Received: November, 2022; Revised: Februray, 2023)

